5.1 (a) (i) Where only two outcomes are possible, i.e. success or failure.
(ii) $\quad \mathrm{p}$ is the probability of success, q is the probability of failure, n is the number of trials r is the number of successes for n trials.
(b) (i) $\quad \mathrm{P}$ (hit) $=\frac{2}{3} \quad \mathrm{P}$ (miss) $=\frac{1}{3} \quad \mathrm{n}=10$

$$
\mathrm{P}(9 \text { hits })=\binom{10}{9}\left(\frac{2}{3}\right)^{9}\left(\frac{1}{3}\right)^{1}=\frac{10 \times 2^{9}}{3^{10}}=0.0867
$$

(ii) $\quad \mathrm{P}(10$ hits $)=\left(\frac{2}{3}\right)^{10}=0.0173$
$P(<9)=1-[P(9)+P(10)]$
$P(<9)=1-[0.0867+0.0173]$
$\mathrm{P}(<9)=0.896$
Thus fewer than 9 times \Rightarrow probability $=0.896$
5.2 68\%, 95\%, 99.7\%
5.3 (a)

$$
P(z \leq 2.11)=0.9826
$$

$P(z \geq 2.43)=1-P(z \leq 2.43)$
$\mathrm{P}(z \geq 2.43)=1-0.9925$
$P(z \geq 2.43)=0.0075 \quad$ (0.75%)
(c)

-1.73
(d)

$\mathrm{P}(\mathrm{z} \leq-1.73)=\mathrm{P}(\mathrm{z} \geq 1.73)$
$\mathrm{P}(\mathrm{z} \leq-1.73)=1-\mathrm{P}(\mathrm{z} \leq 1.73)$
$\mathrm{P}(\mathrm{z} \leq-1.73)=1-0.9582$
$\mathrm{P}(\mathrm{z} \leq-1.73)=0.0418 \quad$ (4.18\%)
$\mathrm{P}(-1.96 \leq \mathrm{z} \leq 1.96)$
$\mathrm{P}(-1.96 \leq \mathrm{z})=\mathrm{P}(\mathrm{z} \geq-1.96)=1-\mathrm{P}(\mathrm{z} \leq 1.96)$
$P(-1.96 \leq z \leq 1.96)=$ Area to the left of 1.96
-Area to the left of -1.96
$\mathrm{P}(-1.96 \leq \mathrm{z} \leq 1.96)=\mathrm{P}(\mathrm{z} \leq 1.96)-[1-\mathrm{P}(\mathrm{z} \leq 1.96)]$
$P(-1.96 \leq z \leq 1.96)=0.9750-[1-0.9750]$
$P(-1.96 \leq z \leq 1.96)=0.95 \quad$ (95\%)

$\mathrm{P}(-1.44 \leq \mathrm{z} \leq 1.23)$
$P(-1.44 \leq z)=P(z \geq-1.44)=1-P(z \leq 1.44)$
$\mathrm{P}(-1.44 \leq \mathrm{z} \leq 1.23)=$ Area to the left of 1.23
-Area to the left of -1.44
$\mathrm{P}(-1.96 \leq \mathrm{z} \leq 1.96)=\mathrm{P}(\mathrm{z} \leq 1.23)-[1-\mathrm{P}(\mathrm{z} \leq 1.44)]$
$\mathrm{P}(-1.96 \leq \mathrm{z} \leq 1.96)=0.8907-[1-0.9251]$
$\mathrm{P}(-1.96 \leq \mathrm{z} \leq 1.96)=0.8158$
(81.58\%)
5.4
$z=\frac{x-\mu}{\sigma}=\frac{49-45}{4}=1$

\Rightarrow The probability of scoring above 1 in the standard normal distribution is $1-0.8413=0.1587$.
The percentage of people scoring above the mean is 50%.
The percentage of people scoring higher than 49 is approx. 16%.
The percentage of people scoring above the mean but lower than 49 is $50-16=34 \%$.
5.5
(a) $z=\frac{x-\mu}{\sigma}=\frac{23-26}{4}=-0.75$
Can only look up postive values in tables
$\mathrm{P}(\mathrm{Z}<-0.75)$
$P(Z>0.75)=1-0.7734=0.2266$
22.66% chance of getting married younger than 23 .

(b) $\quad 90 \%=0.90 \approx 0.8997$ [closest in tables]
$\mathrm{z}=1.28$
$z=\frac{x-\mu}{\sigma}$
$1.28=\frac{x-26}{4}$
(4)(1.28) $=x-26$
$5.12+26=x$
31.12 years $=x$

5.6
(a) $\quad \mathrm{z}=\frac{\mathrm{x}-\mu}{\sigma}=\frac{6.17-6.1}{0.03}=2.333$
$\mathrm{P}(\mathrm{Z} \leq 2.33)=0.9901$
$P(Z>2.33)=1-0.9901=0.0099$
0.99% chance
(b) 1 in $500=0.002$ [0.2\% of Jumps]
$99.8 \% \Rightarrow z=2.88$
$z=\frac{x-\mu}{\sigma}$
$2.88=\frac{x-6.1}{0.03}$
$(2.88)(0.03)=x-6.1$
$0.0864+6.1=x$
$6.186 \mathrm{~m}=\mathrm{x}$

5.7 (i) $5 \%=$ margin of error.
(ii) Null hypothesis : There is no difference in the attitude of Leinster students to PM.

According to the results of the survey we fail to accept the null hypothesis as 45% is outside the margin of error of the results for Munster which is from 55% to 65%.

